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The relative occupation of competing states of local stability is not determined 
solely by the characteristics of the locally favored states, but depends on the 
noise along the whole path connecting the competing states. This is not new, 
but the sophistication of most modern treatments has obscured the simplicity of 
this central point, and here it is argued for in simple physical terms. In addition, 
recent work by van Kampen and by Bfittiker, for particles in closed loops, 
subject to a force field, heavy damping, and a temperature which is a function of 
position in the loop, are supplemented. In that case, circulating currents are set 
up, and these are evaluated. A final speculative section emphasizes the difficulty 
in calculating the long-term time evolution of the probability distribution in 
complex multistable systems with state-dependent noise. 

KEY WORDS:  Relative stability; circulating currents; temperature gradients; 
force fields; state-dependent noise. 

1. I N T R O D U C T I O N  

Particles in a system with nonuniform temperature move out of the hot 
regions with greater velocity than out of the old regions. Pebbles in a 
driveway on flat land accumulate on the side (this example is due to 
G. E. Hinton). In the driveway they are agitated (hot region). They are left 
undisturbed on the side (cold region), and therefore accumulate on the 
side. This occurs despite the fact that the traffic does not exert a directional 
force on the pebbles. The perfect gas law, pV=nRT, tells us that in the 
presence of a nonuniform temperature, but if we allow pressure 
equilibration, the density must vary as lIT. Nonuniform temperatures 
occur in a number of transport problems: thermoelectric effects, thermal 
diffusion and separation of isotopes,(1) thermophoresis,(2'3) etc. The method 
of equilibration varies; some of these problems allow equilibration via 
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collisions, i.e., via pressure. ~4) In the electrical case Coulomb interactions 
are allowed. Here I will emphasize the case of independent particles which 
do not interact with each other. These are presumed to be particles of the 
sort envisioned in the Smoluchowski equation. They can be subject to 
applied forces, and are coupled to a reservoir which determines a viscosity 
and also determines fluctuations. The reservoir temperature will be taken 
to be a function of position. 

The detailed considerations will be one dimensional, i.e., the particles 
are located by specifying a single coordinate. The relevance, however, to 
higher dimensional problems is illustrated in Fig. 1. This shows a set of 
two-dimensional potential contours, with minima at A and B and a saddle 
point at S. In thermal equilibrium, the Boltzmann distribution 
p~exp(-U/kT) will prevail, and there is no particle transport. Now 
consider, instead, the case where the noise is not thermal equilibrium noise, 
and varies with position. Then, escape from the minima at A and B need 
not be via the saddle point if the noise activation for escape is much more 
pronounced along other paths. This permits the situation suggested in 
Fig. 1. Escape from A is via one path, that from B via another. In the 
steady state, where the two escape rates balance, we have a circulating 

t Ts\t  t, 

I 
Z = 0  

Fig. 1. Contours  of a bistable potential with minima at A and B and a saddle point at S. 
Escape from the states of local stability can be along paths favored by particularly intense 
noise and need not  go preferentially across the saddle point. 
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current. (5) The subsequent one-dimensional considerations will model 
noise-induced circulation of this sort around a loop. 

The work reported here has a number of separate sources. The first 
step was implicit in ref. 6, made explicit in refs. 7 and 8, and elaborated 
upon on a number of later occasions. The point is that the relative 
likelihood of finding the system near competing states of local stability 
(e.g., potential minima) cannot be ascertained by examining the 
neighborhood of the competing states of stability. The noise behavior in 
the intervening unlikely states enters critically into the determination of 
relative stability. This point about the inadequacy of local criteria served to 
demonstrate the limited applicability of theorems which only examine 
entropy, entropy production, excess entropy production, etc., near the 
competing states of stability. Work based on such limited criteria has even 
been credited with explaining the origin of life. ~ 

My later elaborations of refs. 7 and 8 did not focus on conditions 
which lead to circulation, as illustrated in Fig. 1. Such studies came out of 
the work of van Kampen (~~ and Biittiker. (~2) (Only refs. 10 and 12 deal 
explicitly with circulatory currents, but ref. 11 is intimately related, in turn, 
to ref. 10.) The relationship between this present paper and ref. 10 is 
particularly close. Papers dealing with noise which depends on the state of 
the system are, of course, abundant and often use the label multiplicative 
noisefl Most of this literature is, however, relatively far from the simple 
physical points we try to make here. For  a recent general review see ref. 7. 

2. N O N U N I F O R M  T E M P E R A T U R E S  

Consider the situation shown in Fig. 2, showing a double-well poten- 
tial. In thermal equilibrium the density in the right-hand valley will be 
higher. Now introduce a hot zone, as shown in Fig. 3, in which the 
fluctuations are more intense. This aids escape from the right-hand well, 
but not from the left-hand well. In the steady state, the net exchange 
between the two wells must vanish; as a result, the hot zone will deplete the 
right-hand well population. With a suitable section of parameters, it 
becomes the less likely well. 

For  the squeamish, as well as for later use, I present a more careful 
argument. Assume that we are dealing with heavily damped motion, and 
that the particle, after crossing a temperature discontinuity, takes on its 
new temperature almost immediately. One possible physical embodiment 
for our situation, which may help the reader, is to consider this as a par- 
ticle in. a tube,/~8) as shown in Fig. 4. When the particle, bounces into the 

2 See rel~. 13-16 and the papers cited in ref. 14, particularly the list in ref. 12 of that paper. 
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Fig. 2. Potential with two states of local stability. In equilibrium the lower-lying right-hand 
state will be more likely. 

tube wall it is assumed to take on the temperature of the tube at that point. 
Reflection at the tube wall is furthermore assumed to be diffuse and not 
specular; the particle is reflected with equal probability into all angles. The 
particle can be taken to be charged and force fields maintained by charges 
on the outside of the tube. The heavily damped nature of the motion is 
reflected by the fact that the potential varies slowly compared to the tube 
diameter. 

In view of the slow potential variation we can ignore it when 
considering the matching problem at a temperature discontinuity. (Even if 
the potential variation were not slow, we could still approximate the 
potential profile by a potential staircase, and similarly for the temperature. 
We could then choose the temperature steps to be between the potential 

Fig. 3. Potential of Fig. 2 in which a portion of the right-hand well has been elevated to a 
higher temperature. 
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Fig. 4. Insulating tube containing a charged particle, with force fields maintained by charges 
on the outside of the tube. Different portions of the tube can be maintained at differing 
temperatures. 

steps.) Figure 5 illustrates the temperature discontinuity. In a simple- 
minded approach, assume that carriers from the left with density P l and 
velocity vl bring a current pll)l to the discontinuity, balanced by a current 
021)2 from the right. Thus, ply1 =p2v2. Utilizing v ~ x/T,  we find 

P 2 = ( r l ~  1/2 (2.1) 
p,  

If, however, we are careful, we must admit that this simple argument does 
not do justice to the kinetics in the actual transition region shown in Fig. 5. 
After all, there is no single transverse plane along our model tube where 
the carriers from the left are entirely characteristic of the medium on the 
left whereas the carriers incident from the right are entirely characteristic of 
that medium. This is, however, a problem which is linear in the distribution 
function; we assume no interactions between particles. Therefore, even if 
Eq. (2.1) is incorrect, we can expect 

P2/P, = f ( T , ,  r2) (2.2) 

with the right-hand side independent of the actual densities. Indeed, 
whether the specific form (2.1) is correct or a different answer allowed by 
Eq. (2.2) applies depends on model details. Thus, ref. 10 advocates p ,,~ 1/T 
at a temperature discontinuity instead of Eq. (2.1). 

~TRANSlTION4 
P ' P2 

T I T2 

Fig. 5. Temperature discontinuity, with T =  T 1 on the left and T =  T 2 on the right. The 
region labeled transition indicates symbolically a range in which the transition in density from 

Pl to P2 is made. 

822/53/I-2-16 
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I can illustrate the sensitivity to model details via a simple elaboration 
on the "tube" model. Consider, first, the original tube with no force field or 
temperature gradient. A spatially uniform density will be found in 
equilibrium. Now elevate a section of the tube to a higher temperature. The 
assumption of completely diffuse reflection at the tube wall assures us that 
the geometrical paths taken by the particles will not be affected by the 
temperature change. The temperature change only causes the velocity 
along these paths to be altered. Thus, i n the  presence of a nonuniform 
temperature, we immediately have p ,-~ 1/x/T. 

Now consider instead a variation on this case in which the tube 
expands with rising temperature. We now need to first consider an 
auxiliary case: A tube with the geometry present after establishing a tem- 
perature discontinuity but at thermal equilibrium at the original lower tem- 
perature. This is the temperature which, in the original problem, is 
presumed to be found in the left-hand portion of the tube. Now the 
auxiliary two-dimensional thermal equilibrium case will have a uniform 
volume density but a greater linear density on the right-hand side after 
integration over the cross section of the tube. Consider the transition from 
this auxiliary model to the case with the same geometry but with the non- 
uniform temperature. As a result of this latest change, the particle paths 
will be unaffected; only the velocities along these paths will change on the 
right-hand side. Thus, the volume densities on the right-hand side will 
diminish relative to those on the left by (T1/T2) ~/2, as in the original tube 
with unchanged cross section. After integrating over tube cross section, 
however, and considering the resulting one-dimensional projected density 
along the tube axis, the (T1/T2) 1/2 factor resulting from velocity changes 
will be offset by the larger volume available on the right-hand side. In fact, 
depending on the particular thermal expansion law, the geometrical effects 
may outweigh the velocity changes and cause the sign of the effect to be 
changed. The original tube model, with a geometry independent of tem- 
prature, corresponds to assuming a mean-free path independent of T. 
Instead, ref. 10 is based on the assumption that 7, the momentum 
relaxation rate, is temperature independent. 

Thus, Eq. (2.1) is a specific result, valid for the temperature-indepen- 
dent cross section. Depending on model details, other results permitted by 
Eq. (2.2) can occur. Also of relevance here is a point made by N. G. van 
Kampen (personal communication) in connection with the type of tube 
discussed here, with a mean free path determined by collisions with the 
walls. Particles traveling almost straight down the axis have an excep- 
tionally long mean free path. In the case of a two-dimensional tube, with a 
one-dimensional cross section, this leads to a divergence in the mobility. It 
is a logarithmic divergence and, as is typical in such cases, is removed 
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by almost any artifice, e.g., a wiggle in the tube or baffles in the tube. 
Alternatively, the reader may want to restrict attention to a tube in three 
dimensions. 

3. RELATIVE STABILITY CONTROLLED BY T E M P E R A T U R E  
V A R I A T I O N  

Consider a bistable well, of the type illustrated in Fig. 6. Between A 
and B as well as between C and D one is at the original temperature TL. 
Between B and C a higher temperature TH is maintained. Within each of 
the three regions AB, BC, and CD the Boltzmann distribution 
e x p ( -  U/kT), with the applicable local temperature, holds in the steady 
state. At the temperature discontinuities Eq. (2.2) applies. In the equations 
that follow, B+ and B_ represent points, respectively, just to the right or 
just to the left of the discontinuity at B, and similarly for C+ and C_.  We 
thus find 

p(B )/p(A)=exp[--(UB-- UA)/kTL] 

p(B + )/p(B_ ) = f (T t ,  TH) 

p(C_ )/p(B + ) = exp [ - ( U c - UB)/KTH] 

p(C + )/p(C_ ) = 1/f(rL, T.)  

p(D )/p( C + ) = exp[ - ( UD -- Uc)/k TL] 

(3.1a) 

(3.1b) 

(3Ac) 

(3.1d) 

(3.1e) 

Multiplying all the ratios in Eq. (3.1) causes the ratios in (3.1b) and 
(3.1d) to cancel, yielding 

p ( D ) _  exp ( UB--UA) Uc_--U.~ U D - U c )  (3.2) 
p(A) kTL j e x p (  kTH / e x p (  kTc J 

o r  

p(D) exp exp - A U  (3.3) 

where A U = U c - UB. Thus, if BC is on the uphill side of the right well, as 
shown in Fig. 6, the heating increases the escape rate from the right well 
and the steady-state population of the left well. If the parameters are 
chosen correctly, then the lower well at D can be made the less likely state, 
via the temperature elevation in BC. This is the conclusion invoked in a 
number of my discussions: Relative stability cannot be determined by an 
examination of the neighborhoods of the favored states, such as A and B. 
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Fig. 6. 
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Region between B and C has been evaluated to temperature T/~, with the remainder 
at the original temperature TL. 

The kinetics along the whole pathway, including the noise in the inter- 
vening rarely occupied states, must be considered. Thus, thermodynamic- 
type criteria, stressing the behavior near the local states of stability, cannot 
help. 

4. CLOSED LOOP, W I T H O U T  C U R R E N T  FLOW 

Let us now make the transition to the case considered in refs. 10, and 
12, where we still concentrate on motion along one spatial variable, but do 
so along a closed loop, so that temperature, potential, and distribution 
function (or density) p are all periodic. The Smoluchowski equation for our 
problem is 

dU k Tp ~ -  ~pkp dT 
J = -#P -~x - ax (4.1) 

Here U is the potential along the loop. The mobility # can be temperature 
dependent. For  simplicity, assume that there is no direct and purely spatial 
dependence of ~ unrelated to temperature variations. Such a variation 
would not cause deviations from the thermal equilibrium distribution, p 
e x p ( - U / k T ) .  The first term on the rhs in Eq. (4.1) is the force-induced par- 
ticle drift, the second is the usual diffusion term. These are the two terms 
which would be present at constant T. The final term allows for the effects 
discussed in the earlier sections; particles move out of the high-temperature 
regions more effectively than out of an adjacent low-temperature region. 
Thus, even if p is initially space independent and no force is present, a 
current can be expected in the presence of a temperature gradient. The 
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undetermined and dimensionless constant c~ reflects the model dependence 
stressed in Section 2. I do, however, assume that ~ is space and temperature 
independent. Equation (4.1) allows for the possible dependence of the 
current on all the obvious variables via the terms proportional to dU/dx, 
dp/dx, and dT/dx. We know that if dT/dx = 0, the terms in dU/dx and 
dp/dx must be related via the Einstein relation. Equation (4.1) has taken 
the diffusion current to be D dp/dx rather than d(Dp)/dx. This question has 
been discussed in detail elsewhere, (1~ and will not be taken up 
here. Equation (4.1) can be mapped into Eq. (2.1) of ref. 12 by lumping the 
first and last terms of Eq. (4.1) into one effective drift term. Now, first 
consider Eq. (4.1) for the stationary state, if dU/dx=O. In that case, 
Eq. (1), assuming j = 0, yields 

p ~  (l /T) ~ (4.2) 

To get results in agreement with the tube model of Section 2 we have to 
choose ~ = 1/2. For agreement with Eq. (3) of ref. 10 we have to choose 
e =  1. For arbitrary U, Eq. (4.1), assuming j = 0 ,  yields 

In the loop this has to be a periodic function of x, the coordinate around 
the loop. The prefactor (l /T) ~ is periodic. The exponential term is periodic 
if 

~ . ~  0 (4.4) 

This condition will be satisfied if the spatial variations of U and T are sym- 
metrical about their maxima and minima and are in phase, in accordance 
with the predictions of ref. 12. Equation (4.4) is a condition already given 
in ref. 10 for the case of a =  1, and generalized here to arbitrary ~. As 
already stated, Eq. (4.1) can be mapped into the simpler form used in 
ref. 12 by lumping the terms in dU/dx and dT/dx into one drift term. In 
that terminology Eq. (4.4) becomes equivalent to Bfittiker's condition that 

= S (v/D) dx is a periodic function in the loop. Let us attempt to connect 
Eq. (4..4) with the entropy exchanged with the reservoir, by a particle 
traversing the whole loop. Note that particles passing through a short 
section of the loop do so by absorbing 

dQ=dU+d(kT) (4.5) 
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In the traversal around the whole loop, the entropy taken by the particle 
from the reservoir might plausibly be taken to be 

~ dS = ~ dQ dU dT (4.6) 

The final term in (4.6) vanishes, and thus 

dS= ~ dU (4.7) 
r(x) 

which must vanish if Eq. (4.4) is to be satisfied. Should ~ dS = 0 have been 
immediately apparent as the condition for no current flow? After all, the 
variation in T is not necessarily small, and we may be describing a system 
far from equilibrium. Even without a particle current around the loop the 
particles are transporting heat from the hot regions of the loop to the cold 
regions, and there must be a net entropy production. I believe, in fact, that 

dS= 0 is not the correct equivalent of Eq. (4.4), and that the apparently 
appealing conclusion 5~ dS= 0 is wrong. A particle moving from a higher 
temperature to a lower one deposits its energy at the final temperature, and 
not at some intermediate temperature, as implied in Eq. (4.6). Consider 
Eq. (4.6) applied to particles moving from position xi+l at temperature 
Ti+ 1 to  x,. at T~ and in equal numbers in the reverse direction. The 
approach of Eq. (4.6) would yield no net entropy exchange. But clearly 
there is heat flow, and more entropy delivered to the reservoir at the low 
temperature than removed at the high temperature. 

5. C U R R E N T  F L O W  

In this section I evaluate the current that flows in a loop not satisfying 
Eq. (4.4). For the sake of simple equations, I will use perturbation theory, 
assuming that second-order terms in the deviation from thermal 
equilibrium can be ignored. This approximation will give a physically more 
transparent result than the one yielded by the more accurate analysis of 
ref. 10. Within the perturbation theory approximation one can integrate 
Eq. (4.1) directly. I allow for the deviations in p from the equilibrium 
density and for the deviations in T from the original temperature but 
ignore cross products in these deviations. I assume a constant j and invoke 
periodicity. Rather than executing this in detail, I will follow a more 
physical procedure, yielding the same answer. 

Let us assume a potential variation and temperature profile as shown 
in Fig. 7. Consider first the open loop situation discussed in Section 3, so 
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Fig. 7. 
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Top: potential variation as a function of position x along a loop. Bottom: tem- 
perature variation, with an elevated temperature in BC. 

that  points A and D in Fig. 7 are unconnected except by passage over the 
intervening potential barrier. Equat ion  (3.3) tells us that  

p(A) ~ o  (5.1) 

Within the per turbat ion theory approximat ion,  assume a temperature 
difference 

&T= T H -  To ~ T o 

This permits us to write Eq. (5.1) in the form 

(5.2) 

p(D)  xp(AV p(A) = \~oo 7o ) (5.3) 

or equivalently 

p(D) AU &T 
log = ~ - -  (5.4) 

p(A) kTo T o 

N o w  this open loop condition,  with zero current, can be considered to 
be a superposi t ion of two counteract ing perturbations,  each of which 
would cause a particle flow. These are: 
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I. Take p(D)r but assume T = T  o all along the device, in 
accordance with the perturbation assumption, which neglects 
cross products. As particles move out of the more heavily 
occupied valley, they are replaced; as they appear in the other 
valley, they are taken away. Thus, we maintain a steady-state 
current. 

II. Assume 6T>O as shown in the lower part of Fig. 7. But enforce 
p(D)=p(A) by taking the particles arriving at D and returning 
them to A, effectively closing the loop. 

Case II specifies the situation in which we are actually trying to evaluate a 
current, and we shall do so by evaluating the compensating current in I. 
Now the currentless situation characterized by Eq. (5.4) is not a strict 
superposition of I and II; after all, in I we have taken T =  To. But as a 
result of the perturbation assumption we can neglect second-order cross 
influences. 

What is the current flow in case I? If p(D)>p(A), there is an elec- 
trochemical potential difference between the two valleys (at A and at D) 
equal to kTo log[p(D)/p(A)]. We can regard this as a driving force applied 
to a medium with variable resistance, having good conductivity in the 
potential valleys and poor conductivity at the peak. This approach was 
introduced by Christiansen, (2~ and has also been applied widely to the 
barrier crossing problem in the semiconductor device literature. It has been 
stressed in ref. 21 (see also Table I of ref. 16), but seems to have received 
little appreciation in the modern statistical mechanics literature. The 
resulting flux is 

j i=KTolog p(D)/~- "- dx (5.5) 
p(A)/O PoP 

The subscript I in Eq. (5.5) refers to situation I. The subscript in P0 
emphasizes that this is the unperturbed equilibrium distribution at To. 
Equation (5.5) is equivalent to Eq. (3.1) of ref. 12. The relationship between 
p(D)/p(A) of situation I and 3T of situation II is given by Eq. (5.4). Thus 
Jn, which has the same magnitude as j~, is given by 

' o/i " Jii  = A U (5.6) 
Po# 

Equation (5.6) can easily be generalized to situations in which there is a 
continuous variation of T, rather than the simple temperature profile of 
Fig. 7. This gives us 
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In Section 4 we learned that Eq. (4.4) gives the condition for j =  0. Is 
this consistent with Eq. (5.7)? Within the perturbation approximation we 
can rewrite condition (4.4) as 

~ dU dU dU dUbT 0 
- = 

dU/T o vanishes. Thus, the condition in Eq. (5.8) becomes 

1 s  
r0 = 0  (5.9) 

In that case, however, the current specified by Eq. (5.7) vanishes, 
demonstrating the consistency of Eq. (5.7) with Eq. (4.4). 

6. C O M P L E X I T Y  

Section 3 emphasized that there are no short cuts in the calculation of 
relative stability; the detailed kinetics along the transition path must be 
taken into account. The relevance of this to discussions of evolution and 
the origin of life has been emphasized elsewhere. (16'18~ In that case we are, 
of course, not dealing with two competing states of local stability, but a 
myriad of potentially stable ecologies. Mutations are the most obvious 
fluctuations which can induce transitions from one locally stable state to 
another one. 

The lack of available short cuts in predicting the noise-activated 
exploration of many competing states of local stability can be related to 
questions of complexity in deterministic nonlinear systems, frequently 
treated in the literature. In discussing this relationship ! will be repeating 
notions proposed in ref. 22 and will, admittedly, be entering into 
speculation. First consider chaos in deterministic systems. Multiply 
periodic motion, e.g., y = c o s [ c o 0 t +  (6 sine)mt)t ], or, for that matter, 
almost all functions expressed in typical mathematical notation, may look 
a little complex, but that does not cause unusual difficulty in the 
calculation of y at a much later time. We do not need to follow the motion 
in detail over the intervening period. Chaos is more complex than that, in a 
genuine way. To predict a position a great many "cycles" later in the 
chaotic case requires that we follow the motion very precisely. The 
program that directs such a calculation need not be complex; it is not a 
matter of great algorithmic complexity. (23) It is rather the detailed 
execution of the calculation which is long, i.e., the number of 'steps 
involved. This is a complexity measure which Bennett has proposed, 
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discussed, and called "logical depth. ''(24) Bennett's "logical depth" is an 
attempt to go past the many obvious and superficial attempts to charac- 
terize self-organization as seen in biological structures. Bennett as well as 
Kuhn (25) have taught us in very different ways and very different language 
that there are some structures in nature (or computational results) which 
simply canot be reached easily from a simple or prevalent initial state. 
These states require a long evolution (or computation). That may well be 
the essence (or at least a part of it) of what we mean by self-organization. 
It has little to do with the almost instantaneous establishment of orderly 
motion in very simple deterministic systems, e.g., the B6nard instability, the 
Belousov-Zhabotinskii reaction, or the onset of oscillations in a self-excited 
oscillator, when the gain becomes large enough. Such simple systems are 
only following their laws of motion, and do so immediately when the 
external parameters are set appropriately. There is no long search or 
evolution involved in these simple instabilities. 

The noise-activated search for likely states of local stability presents us 
with a similar dichotomy. If we are dealing with a multistable potential and 
thermal equilibrium noise, then the depth of a set of wells allows us to 
compute their eventual (long-term) relative probability densities. Even if 
we are dealing with systems of unlimited extent in which continually new 
parts of space will be occupied, the relative occupation of nearby states of 
local stability wilt not change appreciably after an initial period. If, 
however, we are dealing with a system which is not in thermal equilibrium, 
then it becomes more difficult. The additional difficulty relates to the 
discussion of the kinetics of Fig. 3, but also to the fact that in this more 
general case we can have circulation present in the steady state, as 
illustrated in Fig. 1. This opens, for example, the possibility of long 
circulation paths which can control the relative population of two nearby 
states but become fully effective only after a considerable time. The kinetics 
along the various pathways must then be taken into account. To predict 
the probability distribution at a much later time from a given initial state, 
we must follow the motion in detail. (The italicized word must in the 
preceding sentence is an intuitive assesment, it has not been proven.) A 
related measure of complexity, counting the number of states of local 
stability which have to be explored along the way, has been proposed by 
Kuhn. (25) He has called it knowledge gained, in connection with his 
discussions of the origin of life and the time development of biological 
evolution. In general, we can expect that there will be situations in which 
both ordinary chaos as well as our statistical complexities are present 
simultaneously and are not separable. We can start with a deterministic 
law of system motion which is already chaotic and then modify the system 
to make it stochastic. 
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The analogy between complexity in chaos and that in stochastic mul- 
tistability is not meant to be carried too far. Chaos was only used as an 
introduction to a complexity measure which characterizes program 
execution time. Chaotic motion, for example, does not settle down. The 
solution to a master equation, however, typically approaches a steady 
solution. In a space of unlimited extent, however, containing always more 
remote states of local stability, distribution function changes c a n  continue 
indefinitely. Chaos in deterministic systems can arise in a simple system 
described by a few parameters. Our statistical complexities, on the other 
hand, arise from the existence of a great many competing states of local 
stability, i.e., from intrinsically complex dynamics. 

This discussion of complexity in the presence of multistability is a first 
rough thrust in a direction which demands more Jlbrmal skills than this 
author can supply. 

7. CONCLUSION 

I have elaborated on the views of refs. 10 and 12. The loop that I have 
described may not be all that easily realizable in a simple physical form, 
but it is a model of the circulatory effects that can be found in many- 
dimensional systems and illustrated in Fig. 1. 
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